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The problem studied here is that of the attenuation of internal waves through 
turbulent mixing in a weakly and exponentially stratified fluid. The equations 
are linearized and it is assumed that the action of turbulence can be parametrically 
represented by eddy mixing coefficients and that the influence of bottom friction 
is restricted to a thin bottom boundary layer. The simple case where there is no 
rotation and only one component to the stratification is first examined in detail, 
and the modifications caused by introducing rotation and a second component 
are subsequently investigated. Subject quantitatively to the choice made for 
the eddy coefficients, but qualitatively not strongly dependent on that choice, 
the following conclusions are drawn: (i) very short internal waves (length 
< loom) are strongly damped in basins of all depths; (ii) long internal waves or 
seiches in shallow seas (depth N 100m) will not last more than a few cycles as 
free oscillations; (iii) the attenuation rate for long internal tides is small enough 
that these should be observable very far from the coasts, but large enough to 
exclude the possibility of oceanic standing wave systems; (iv) for very long 
internal waves the damping is predominantly due to the effect of bottom friction, 
and the attenuation rate becomes almost independent of the actual form of t'he 
stratification present in the fluid. 

1. Introduction 
Rattray (1957) has already pointed out the importance of knowing the dis- 

sipation rate of internal waves in order to correctly assess theories attempting to 
explain their origin. An exclusively coastal generation theory would, for example, 
be inconsistent with a strong damping factor and observation of large internal 
waves in the high seas. The work of Rattray, like that of his predecessors in this 
field (Harrison 1908; Ekman 1931), deals with the frictional attenuation of 
oscillations of the interface between two superimposed fluids of slightly different 
densities. Such waves are found to be damped at a rate proportional to the square 
root of the eddy viscosity, the amplitude of long waves being reduced by a half 
in a distance of the order of 1000 km (Rattray 1957). 

Since it may not be justifiable to approximate everywhere the oceanic density 
field by a discontinuous stratification, it is interesting to extend this investiga- 
tion to continuously stratified fluids. A step in that direction has already been 
taken by Krauss (1964), who finds that the damping rate is proportional to the 
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first power of the eddy viscosity but numerically smaller than that found by 
Rattray. The present work also takes into account the dissipative effect of mixing 
processes, considers the influence of rotation and examines in more detail 
the assumption involved in the use of eddy diffusion and viscosity coefficients 
to represent the action of turbulence on internal waves. 

2. On eddy coefficients 
Most flows of geophysical interest are turbulent, and in order to obtain a 

solution of the hydrodynamic equations one often assumes that the non-linear 
interaction between turbulent and mean flow (the influence of the Reynolds 
stresses) is analogous to the linear molecular mixing processes and can be 
represented by ‘eddy’ viscosity and diffusion coefficients. The main justification 
of this approximation is of course that it overcomes the mathematical difficulties 
involved in the solution of non-linear equations. 

The analogy between the Reynolds and viscous stresses is however a very gross 
one, and this subterfuge can only give an idea of the order of magnitude of the 
amount of energy extracted by the turbulence from the mean flow. One should 
then not attribute too much significance to those results which depend critically 
on the value of the eddy parameters, and even those results which are almost 
independent of the value of the parameters are still subject to the assumption 
as to the form of the interaction. 

The eddy coefficients should be functions of the intensity and the spatial 
distribution of the turbulence as well as of the scale of the mean flow with which 
i t  interacts. The spatial dependence may however fall if the turbulent field is 
homogeneous. With a wave motion as mean flow, the interaction with a turbu- 
lent field and its dependence on wavelength is clearly put forward by this quali- 
tative argument of Groen (1954) : ‘turbulent eddies which are small in comparison 
with the wavelength cause an internal friction, and consequently a loss of ordered 
energy, or a decay of the waves. Eddies however which are large compared to 
the wavelength only cause local changes of phase velocity and group velocity. 
Short waves which have passed through such an eddy may, after leaving its 
sphere of action, have undergone refraction, but will not, on the average, have 
lost energy thereby.’ It is clear that whether an eddy is considered large or 
small depends on the length of a particular wave, and the action of turbulence, 
represented parametrically by an eddy viscosity, will be a function of the wave 
length, L. 

It is convenient, when examining the interaction of waves and turbulence, 
to divide the turbulent field into two parts: ‘internally’ generated turbulence, 
produced by the waves themselves, and ‘externally’ generated turbulence, 
which exists independently of the wave motion. Bowden (1960) and Groen 
(1954) have investigated the influence of turbulent fields of the first and second 
type respectively on surface gravity waves. On the basis of a dimensional 
argument, Bowden uses an eddy viscosity K proportional to the wave amplitude 
A and the wave velocity C so that K = const. CA. On the basis of the qualitative 
argument given above, Groen uses Richardson’s + power law (Richardson & 
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Stommel 1948) to write K = const. Lt. Comparison of their predicted damping 
rates with attenuation characteristics of long swell are however inconclusive 
in both cases, so that the choice of the form of the eddy coefficients is not critically 
tested. 

These concepts are easily extended to internal gravity waves. The general 
effect of a stable stratification po(z) is to reduce the intensity of the turbulence, 
particularly in the vertical direction. Turbulent energy is as usual dissipated 
by molecular friction and is also, through molecular diffusion, transferred to 
gravitational potential energy: the density gradients are eroded, which, for a 
stable stratification, leads to an increase of potential energy. It may also happen, 
for two-component stratifications, that potential energy is extracted from the 
density field, provided that the two components have gradients of opposite 
signs and their diffusivities are not identical (Walin 1964). The turbulent field 
may still be considered horizontally homogeneous, but because of the reduced 
intensity in the vertical direction two sets of eddy coefficients must now be used, 
one describing turbulent exchange in the horizontal (Kh, of order 103 to 108cm2 
sec-1) and the other in the vertical direction (Kv, of order 10 to 103cm2sec-l). 

If the turbulence is of the ‘internally’ generated type, the dimensional argu- 
ment of Bowden may still be made; the proportionality constant will now 
presumably depend on the Richardson number. A study of the mixing effects 
of internal waves in the ocean, by Glinskii & Boguslavskii (1963), based on a 
slightly different eddy viscosity (directly proportional to the square of the ampli- 
tude, inversely to the period), gives reasonable results for the heat transfer below 
the thermocline, so that at least no contradictory results arise from using such an 
eddy viscosity. The qualitative argument of Groen will hold for internal as well 
as for surface waves. Since the turbulence is no longer three-dimensionally 
homogeneous, the L% dependence of the eddy coefficients is no longer a reasonable 
assumption. Once the use of eddy viscosity parameters has been resolved upon, 
these arguments can be extended to introduce eddy diffusion coefficients for the 
diffusion of heat and salt. 

An averaging process must now be devised by means of which the turbulent 
field can be formally separated from the mean flow (here, the field of internal 
waves) and a Reynolds equation derived. Let us first describe the problem. 

Consider a layer of incompressible fluid of thickness H ,  of infinite lateral 
extent, rotating with angular velocity C? about an axis perpendicular to its 
equilibrium surface. Let us choose right-handed co-ordinates x = (z, y ,  z )  
rotating with the fluid and such that z = 0 at the upper surface and increases 
downwards. The corresponding velocity components are denoted by u = (u, v, w). 
The fluid is, on a time average, at rest and is endowed with a weak density strati- 
fication, po(x), maintained by unspecified but adequate sources of heat and salt. 
This zero-order state is described by vanishing velocities and hydrostatic 
pressure: 

(1) uo = 0, po = pogx + const. 

Superimposed upon this is a horizontally homogeneous and nearly stationary 
field of ‘external ’ turbulence characterized by velocity and density fluctuations 
ul(x,t), p,(x,t) ,  with pj < po. Because of homogeneity, time averages are in- 
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dependent of horizontal co-ordinates, and because of the nearly stationary 
behaviour all non-zero space averages, are only slowly varying functions of time. 
Since this turbulent field is decaying, no sources need be postulated to maintain 
it; it is only assumed that the decay time-constant is much longer than the period 
of the waves. 

Propagating in this field of turbulence in the positive x-direction are flat- 
crested internal waves of angular frequency o and wave-number k, and of small 
enough amplitude that we may neglect squares of velocities as well as density 
disturbances due to the waves as compared to the main density field. The turbu- 
lent field will be separated from the waves by averaging in a horizontal direction 
perpendicular to the direction of propagation (i.e. along the crests, in the y- 
direction). Since the turbulent variables are random in phase and homogeneous 
in space, the y-average will leave only the wave field. Denoting the averaged 
wave field by overscored variables and the total turbulent perturbations (in- 
cluding the extra perturbations caused by turbulent transport of water particles 
endowed with wave velocities) by primed variables, the total field is given by 

I u = U+u’, 

P = PO+P+P’, 
P = p 0 + p + p 1 .  

All primed quantities have zero y-average; all overscored variables have zero 
time-average. 

Substitution of (2) in the Navier-Stokes equations and averaging in the y- 
direction gives, to first order in the overscored variables, a Reynolds equation; 
in tensor notation, 

It is now that an eddy viscosity coefficient is introduced to linearize the problem. 
Subject to the limitations outlined at  the beginning of this section, one writes, 
in formal analogy to the molecular friction term. 

The conservation equation for some diffusive property T (temperature, say) 
corresponding to (3) will be 

The eddy heat diffusion coefficients KA are introduced in the same manner as 
the viscosity coefficients: 

a -  

The above analysis holds for a field of ‘externally’ generated turbulence. 
One sees, nevertheless, that if ‘internally’ generated turbulence is of random 
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phase (just as likely to be a positive as a negative perturbation), averaging in the 
y-direction will allow the fields to be separated as in (2) and derivation of Rey- 
nolds and diffusion equations. If the damping rate of the waves is small their 
turbulence-producing capacity is nearly constant and the resulting turbulent 
field is also nearly stationary. Horizontal homogeneity cannot be assumed and 
three different eddy coefficients are required. These coefficients will have an 
entirely different dependence upon the wave parameters as those introduced to 
represent the 'external' turbulent field, but no new notation will be used and 
the two sets lumped under the same symbols. 

3. The wave equation 
The fluid has already been assumed incompressible, so that the density will 

be a function of temperature (T) and salinity (X) only. For simplicity, p(x,t) 
is assumed to be linear in these two variables; for the steady field, 

PO(') = PO(') - a l T O ( z )  + a2x0(z )7  
and for the wave field, 

P(X, t )  = - alT(x,  t )  + a2 R(x, t ) .  

The coefficients a1 and a2 are positive. Although this linearization is not a bad 
approximation to the actual salinity dependence, with a2 = 8.149 x lO-3g 
per "C (Fofonoff 1961), the temperature variation lends itself to a linear ap- 
proximation only for a narrow range of temperatures at the time, and a1 is left 
unspecified, but of order 10-4g cm-3/"C. 

Eddy coefficients for momentum, heat and salt diffusion will in general be 
different from each other, and will now be written so as to include the correspond- 
ing molecular coefficients: for example, 

K,  = K ~ + v .  

The coefficients K,, etc., are taken to be spatially uniform; they are still free 
to depend on the wave parameters. Although it is reasonable to assume that for a 
horizontally homogeneous field of turbulence the mixing does not depend on 
position, some restriction must be put on the density field to extend this to the 
vertical direction. The vertical intensity of the turbulence will depend, other 
things being equal, on the degree of stratification of the fluid. It is clear then that 
if there is to be some sense in taking eddy coefficients independent of z ,  the 
fluid must at  least be uniformly stratified. This is so when dp,/dx is constant or, 
for weak stratifications (Ap, < po),  when the stability parameter, pi1 dp,/dz, 
is a constant. Our attention will then be restricted to weak exponential density 
fields, of uniform stability; this is not a bad approximation for many situations 
where the density increases smoothly and gradually between top and bottom, 
but it will not apply if any pycnocline is present. 

Adding an extra index ( r )  to the eddy coefficients to take their anisotropy into 
account (Kmr, for example, is the eddy viscosity coefficient in the r-direction), 
the linearized momentum equation becomes 
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The y-averaged continuity equation is 

auipxi = 0. (10) 

Independent equations for the conservation of heat and salt are, with eddy 
coefficients Khr and K, respectively, 

(ap t  - Khr a 2 / a X ; )  + W dTo/dx = 0, (11) 

( a p t  - K,, ayax;) 8 + w dsoldx = 0. (12) 

Equations (7) to (12) completely describe the dynamics of the linearized system, 
for weak stratifications. All variables but one can be eliminated and a wave 
equation for the vertical velocity derived. 

First taking the curl of (9) and selecting the x-component of the resulting vor- 
ticity equation, we have 

(ap t  - K,, azpx,") g- 2fi  awlax = 0, (13) 

where 
and again selecting the z-component, we find 

is the x-component of the vorticity. Now taking twice the curl of (9) 

The vector symbols for the Laplacian and its horizontal component (Vi)  have 
been used, for brevity and in spite of notational purity. 

By operating on (14) with (apt  -K,,a2/ax:) and using (13), cis  eliminated: 

Substituting for p in terms of its components 
these by successively operating on (15) with 

and B through (8) and eliminating 

(5 -Kh,$,) and ( i -Ksr" )  ax; 

and using (1 1) and (12) the following wave equation in W alone results: 

(16) 

For a one-component stratification, this equation is formally identical to that 
applying to the study of thermal convectionin afluid heated from below (Chandra- 
sekhar 1961). The differences between the two problems lie in the sign of the 
density gradient and in the anisotropy of the present mixing coefficients. 

The boundary conditions are taken as for the convection problem. Krauss 
(1 965) has indeed shown that approximating the free surface dynamical bound- 
ary condition by W(x, y, 0;  t )  = 0 has for main effect the loss of surface waves 



Damping of internal gravity wuves in a continuously strati$ed ocean 127 

and a small change in the eigenvalues of the first internal mode. We are not here 
interested in surface waves and will also sacrifice some accuracy to the simplicity 
of this reduced boundary condition. Moreover, not only the upper surface, but 
also the bottom of the ocean will be considered incapable of supporting stress. 
The results will of course not be directly applicable to the ocean, but the sim- 
plicity of the solution and the closed analytical form of the results allow better 
understanding of the influence of the various physical parameters. The solution 
is thus developed for an ocean with a free-slip bottom. The inadequacy of the 
lower boundary condition will be supplemented by a boundary-layer analysis 
to evaluate the influence of bottom friction. 

On both bounding surfaces then the vertical velocity and the density per- 
turbations vanish: 

(17) 

a2w/aZ2 = aE/az = 0 a t  z = 0, H .  (18) 

- w(x, t )  = T(x, t )  = B(x, t )  = 0 a t  x = 0, H ,  

and so do the stresses and torques 

With the help of equations (11)-(17) the boundary conditions can be expressed 
in terms of the vertical velocity alone: 

a 2 N z / a z ~  = 0 for N = 0,1 ,  ..., 4 at z = 0 ,H .  (19) 

4. Wave solution 
Waves of the form - w = W ( z )  ewf-ikz 

are postulated as solutions. They propagate with a given wave-number k in the 
positive x-direction. The depth-dependent function W ( z )  and the unknown com- 
plex frequency eigenvalue w are to be determined from the stratification and 
the boundary conditions. 

The following non-dimensional variables, operators and parameters are now 
introduced. 

z' = Z/H; D = i3ja.z; a = kH. 

1 3  
K ,  = - C Kmi, and similarly for K ,  and K,. 

3 j = ,  
CT = wH2/Km. 

Pjr(Kmr, K h r ,  Ksr) = K~1(Kmr6f,+K,,sjl+K,6,2+K,6jo), where f = O,1,2,3. 

(21) 
1 3  

3,=1 
P j  = Pfr(Krn,Kh,KJ; P = - C Pj. 

Y = (4PO(O) + a2So)/(iPo(0) -%To). 
r = p,+p0/dx = (r, + rr2)/(i + 7). 

R = gH41'/(K&p), a Rayleigh number. 

Rf = gB4rf/(Kkp,),  a partial Rayleigh number;f = 1,2 .  

0 = 4Q2H4/Kk, a Taylor number. 
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Substituting the postulated wave solution (20) into (16) we have, in the nota,tion 
of (21): 

([.- - (P33D2 - 1)31a2)I2 (D2 - a2) + GO2) [a - (P13D2 - p11a2)1 [.-- (P23D2 - P21"2)1 w 

x [ g -  (p33D2-p31a2)] w = 0. ( 2 2 )  

D 2 N W = 0 ,  N = 0 , 1 ,  ..., 4 at x ' = O , l .  ( 2 3 )  

-a2(1 + y ) - l { R l p l [ g -  (P23D2-P21"2)1 +?R2p2[(T- (p13D2-.?ha2)1) 

The boundary conditions (19 )  become 

For a weak exponential stratification rl and r2 are constants and 72: 1, 
so that equation (22 )  has constant coefficients and solutions satisfying boundary 
conditions (23 )  are of the form 

W(z')  = const. sin (nm'), with n = 1,2, .... ( 2 4 )  

( 2 5 )  

Substituting ( 2 4 )  into ( 2 2 )  we obtain an algebraic characteristic equation for (T. 

Let us write 

which gives the characteristic equation a more compact form: 

7f = Pf3n2++Pf1(1.2, f = 0,1 ,2 ,3 ,  

[(a+73)270+@n27T21 (g+72)+u2(1 +?)-' [RlPl(a+72)+?R2p2(.-+rl)l 

x ( g + q 3 )  = 0. (26) 
Special cases of this equation will be studied. 

5. Non-rotating fluid 
(a )  The effect of the temperatureJield 

Let us first retain only the temperature field. Equation (26) reduces to the 
quadratic 

which has complex roots 

(37) 

(28) 

(T2 f (71 + 73) fT + 7173 f a2RP/70 == 

(T = -1 
2 (71 + 73) I. i[a2RP/?7o - if%- 73)214. 

The real part of .- is always negative and the waves are always damped. The 
magnitude of the exponential damping coefficient is proportional to the wave- 
number squared multiplied by the appropriate diffusion coefficient and the 
influences of momentum and heat diffusion are directly additive. The functional 
dependence is the same as that obtained by Krauss (1964) when only viscosity 
acts, and (28) reduces to his result when y l  = 0, p31 = p33. The imaginary part 
of CT also contains a term arising from the mixing and frictional processes, so that 
the frequency of damped waves is smaller than that of undamped ones. Moreover, 
if this second term becomes so large that 

(71 - 73)2 7 0 / ( 4 a 2 R ~ )  2 1, (29) 

only critically damped motions will be found. 

wave amplitude decreases by a factor ( l / e )  : 
We can characterize the damping rate by a time constant, 7, in which the 
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For propagating waves it is however more meaningful, since the velocity is also 
affected by mixing and friction, to compare with the wavelength ( L  = 3n/lc) 
the distance xe travelled by the wave at  the phase velocity during the time r :  

10-8 10-7 10-6 10-5 10-4 10-3 

k (em-') 

FIGURE 1. The influence of dissipative processes on the frequency of internal waves. 
!2 = 0, rZ = 0, n = 1. Continuous lines, H = 1000 m; broken lines, H = 100 m. 
9 Fluid Mech. 25 
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This quantity is also, for small dissipation rates, the ratio of the average energy 
content of the wave to the amount of energy lost per cycle through turbulent 
interaction. x,/L is then equal to the Q of the oscillating system. 

The period lengthening is directly related to the ratio (ql - q3)2 ro/(4a2Bp), 
the dependence of which on some of the wave parameters is illustrated in figure 1. 
The dependence of the relative damping length, xJL, on wave-number, total 

Id 

10' 

Y 10 
d 

1 

10--1 

1 0 - b  10-7 10-6 10-5 10-4 

k (om-l) 

Continuous lines, H = 1000 m; broken lines, H = 100 m. 
FIGURE 2. The relative damping length for R = 0, rZ = 0,  = 1. 

depth, eddy viscosity and vertical mode number is shown in figures 2 and 3. 
In  these examples the values Apo/po = lop3, Km3 = lo2 cm2sec-l have been used; 
r1/q3 is taken as 0.1 in all numerical examples. 

The damping and period increase are in general dependent on the least well- 
known parameter, ITml; a few general features may however be noted which are 
independent-of the magnitude of the eddy coefficients: (1) The relative damping 
length and period increase present a maximum and a minimum, respectively, at 
intermediate wavelengths; the position of these extrema depends on Kml. 
Such a wavelength dependence would act as a filter if Kml was independent of 
wavelength: very far from their region of generation one would observe mostly 
internal waves with lengths near that corresponding to the extrema. When 
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Kml depends on the wavelength in the general way outlined in $2, this effect 
becomes of little importance. It may, however, be of some consequence in the 
purely laminar case (LeBlond 1965). (2) The damping is more rapid when K,, 
is larger, but the influence of K,, becomes smaller at long wavelengths. (3) The 

1 04 

103 

102 

Y 
H" 

10 

1 

lo-' 

10-8 10-7 10-6 10-5 10-4 10-3 

k (cm-1) 

FIGURE 3. The relative damping length for fi = 0, I'z = 0, H = 5000 m. 
Continuous lines, n = 1; broken lines, n = 3. 

dependence of the relative damping length on the depth of the water layer is in 
opposite directions for long and short waves; in the first case, (31) depends on H 
mostly through its numerator, in the second case through its denominator. 
(4) The damping rate and the frequency lowering increase with the vertical mode 
number, n; for very large n, the relative damping length is proportional to n-3. 

9-3 
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This effect will, however, not manifest itself until the n variation plays the 
dominant role in qf: as long as n2n2 < a2, that is in the direction of large depths 
and short waves, the damping rate will not depend much on n. In  other words, 
the vertical mode number becomes important only when vertical mixing pre- 
dominates. ( 5 )  The relative damping length increases directly as the square root 
of the relative magnitude of the stratification, Apo/po, except very near the cut- 
off points. 

Let us next see how the addition of a second component to the stratification 
(salinity) modifies this simple picture. 

( b )  The ejj'ect of the temperature and salinityfields 

Still with S l  = 0, but now with r2 non-zero, the characteristic equation becomes 

The symbol E has been introduced to represent the relative contributions of the 
temperature and salinity fields to the total stratification: 

The domain of E is divided into three subdomains by the gravitational stability 
condition 

R,(e+ 1 )  0. 

When R, and R, > 0, t' > 0; when R, < 0, R, > 0, - 1 < E < 0; and when 

Equation (32) will lead to solutions of oscillatory form when it has complex 
roots, that is, when its cubic discriminant is positive. This condition is satisfied 
except when 

(34) 

R 1 > 0 , R 2 < 0 , ~ <  -1. 

< [(98p/2 -83) + (9- 3p)t], (35) 
with = 7lf72+73, 4 = 7172+71'y/3+1/273* 

For rl = q2, the two components of the stratification are dynamically undis- 
tinguishable; for y2 = 0, the second component does not diffuse and the effect 
of its presence will be a reduction of the damping rate; when E = 0, we have the 
same problem as in 8 5 a with salinity instead of temperature. More generally, the 
wave-number where transition from internal waves to critically damped motions 
occurs is now a function of T , I ~ / ~ ~ .  The cut-off point is only slightly changed in the 
direction of small wave-numbers, but bands where internal waves can exist now 
appear at  wave-numberslarger than the cut-off wave-number. Figure 4 shows as an 
example the dependence of the position of upper wave-number frequency cut-off 
on E and r2/q1 for Apo/po = 10-3, Km3 = 102 cm2 see-1, K,, = K,, = 108 em2 see-1, 
n = 1, and H = lO5cm. 
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but nothing 
definite is known about the ratio of their eddy diffusivities in the ocean. Figure 4 
shows that if yz + vl there results in general an extension towards shorter 
wavelengths or the possibility of existence of internal waves. Under the restric- 
tion to be introduced later on the maximum value of the eddy coefficients, the 
upper cut-off point will in any case never be closely approached. 

The ratio of the molecular diffusivity of salt to that of heat is 

0.2 

10-5 
k (em-l) 

10-4 

FIGURIC 4. The loci of vanishing frequency for a two-component stratification. Broken 
line, E = - 0.5; continuous lines, from left to right, E = 0, 1, 5, - 3. ( + ) denotes regions 
where internal waves may exist ; ( - ) denotes regions where only critically damped motions 
are possible. 

Another interesting property of two-component stratifications has been 
pointed out by Stern (1960) and by Walin (1964). Because of a difference in the 
diffusivities of the two components, a gravitationally stable density field may 
turn out to be dynamically unstable. The criterion derived by Walin for insta- 
bility to wave motions (that the real part of CT be 2 0, its imaginary part non- 
zero) is, in the notation used here, 

< -1 .  (36) -~ a2R2PzY 
(l  fy)rO (71+72+r]3) ( ~ 1 ~ 2 + ~ 2 ~ 3 f ~ 1 ~ 3 ) - ~ 1 r / 2 r ] 3  

€(7l+ 73) + (72 + 73) 
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There exists a band of wave-numbers where the system is unstable to wave 

(37) 
motion whenever 

Equations (34) and (37) are compatible (assuming 7, > rj2) only when the tem- 
perature increases with depth (I?, < 0), c being restricted then to the range 

R2[€(71+ 73) + ( 7 2  + 73)I 0. 

- 6 6 - (73 + 72)/(73 f 71)- (35) 

(39) 

For the molecular diffusivities, this range is 

- 1  6 E < -0.910. 

10-3 10-7 10 10 5 10- 10 

k (cm-I) 

FIGURE 5. Marginal stability curves for a two-component stratification with a dynamically 
unstable range. Continuous lines, H = 1000 m; broken lines, H = 100 m. Labels 1 and 2 
pertain to E = - 0.92 and - 0.96, a and b to v2/v1 = 0.1 and 0.01. 

As long as ql > qz (which might presumably also be the case for eddy coefficients) 
such a range of e will exist even when the mixing is done by turbulent processes. 
Conditions in which internal waves will be unstable might then occur in an ocean 
where cold relatively fresh water overlies a warmer, more saline, water mass. 
Internal waves with length such as to satisfy (36) would be amplified in such 
surroundings. Their first influence would be to increase the intensity of the 
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‘internally ’ generated turbulence, increasing the eddy coefficients and thus 
growing at a progressively slower rate until the instability conditions are no 
longer satisfied. A secondary effect of the transfer of energy from the density 
field to the stratification will be an increase in the intensity of the stratification. 
Because ql > q2, the adverse temperature gradient will be gradually ironed out; 
this again produces a situation where (36) is no longer satisfied. The accelerated 
mixing in such a situation would favour the cooling of deeper water and might 
play some role in the formation of deep waters in the oceans. 

For relatively long wavelengths (a2Rp/qo B 7:) the complex roots of (32) 
ca.n be approximated by 

21 - &[73 + (a71 + r / 2 ) / ( € +  l)1 k i(@2Rp/qO)9. (40) 

In  that case then the damping effects of heat and salt are directly additive and 
weighed according to their respective eddy diffusivities and contributions to 
the total stratification. 

6.  Rotating fluid 

is not zero becomes 
In a purely thermally stratified fluid the characteristic equation when Q 

(r3 + (ql + 27,) v2 + (7: + Q1q3 + a2Rp/q0 + On2nr2/T0) g 

+ 717: + a2Rpq3/70 + @~~2n2q1/qo = 0. (41) 

We immediately note that when heat and momentum diffuse a t  the same rate 
(ql = r3) equation (41) contains ( r+v3)  as a factor, the resulting quadratic 
being of the form (27). The effect of rotation is in that case directly identifiable 
with an extra stability term, so that the frequency is increased accordingly. 

When q1 $: q3, there will exist complex roots of (41), corresponding to oscil- 
latory solutions, when the cubic determinant of (41) is positive. This discriminant 
is itself written as a cubic in A = a2Rp/[(ql - q3)27;10], with coefficient functions 
of B = On2n2/[(ql - q3)2  ro] : 

(42) A3 +A2(3B- $) +A(3B2- 5B) + (B3 + 2B2 +B). 

This latter expression always has a negative real root, and will be negative for a 
range of positive values of A if there is also a pair of positive real roots. In  order 
to prevent this, the cubic discriminant of (42) must also be positive, this being 
expressed by the simple inequality 

B 2 &. (43) 

Rotation then has a general stiffening effect on the fluid, allowing, by (43), 
internal waves to exist even when the factor A is below the limiting value 
( A  = $) for the existence of internal waves in a non-rotating fluid (equation (29), 
$ 5 ~ ) .  This result may not however be extended to apply to the case I? = 0. 
In that case, only inertial waves are possible (Chandrasekhar 1961, $23); these 
waves are transverse, so that the only non-zero velocity component for a hori- 
zontally propagating wave is W. With boundary conditions W = 0 at  z’ = 0, 1, and 
the fact that U. and V vanish identically, it  follows from the continuity equation 
that W is also zero everywhere; (16) is then identically satisfied, with W = 0. 
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For long waves, the complex roots of (41) are approximated by 

g N -.I_ 3(y573+71)- 9 +(73-571) (20n2n2-a2Rp)/(On2772+a2Rp) 

& i[(a2Ep + Or22n2)/7,]k (44) 

This approximation has been used, where applicable, to calculate the relative 
damping lengths x,/L for the same values of the parameters as in figures 3 
and 3 and with a rate of rotation equal to that of the Earth at  the poles (figures 6 
and 7).  Note that the influence of rotation is strongest at  long wavelengths, 

1 8  

102 

y 10 
H" 

1 

10-1 

I 1 I I 

10-8 10-7 10-6 10-5 10-4 10-3 

k (cm-l) 

FIGURE 6. The relative damping length for 1;1 = 0-707 x see-l, I'z = 0, 
n = 1. Continuous lines, H = 1000 m; broken lines, H = 100 m. 

where @nzn2/(a2Bp) % 1, and that the long wavelength cut-off which exists in 
the absence of rotation disappears completely (compare figure 3, H = lO*cm, 
and figure 7, same depth). The relative damping length is very much increased 
for long waves and the possible filtering action pointed out earlier correspondingly 
diminished. The short wave cut-off and the relative damping lengths are not 
much affected by rotation. 

Because of the negligible influence of friction on the frequency at  small wave- 
numbers, the long waves are still limited to periods shorter than a half pendulum- 
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FIGURE 7 .  The relative damping length for R = 0.707 x = 0,  
H = 5000 m. Continuous lines, n. = 1 ; broken lines, n. = 3. 

day. Near the frequency cut-off, however, waves of verylong periods are theoretic- 
ally possible (figure 8). Such waves are, however, so strongly damped as to be of 
doubtful significance. 

7. Discussion 
The attenuation rates calculated above apply only to a basin with a friction- 

less bottom and are strongly dependent upon the magnitude of the eddy mixing 
coefficients. We will now impose a restriction on the magnitude of these 
coefficients. Since the problem was linearized, it is difficult to take into account 
any dependence of the strength of the turbulence upon the wave amplitude 
(‘internal’ type of turbulence); we may however use the fact that turbulent 
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mixing processes are more important for larger scales of motion to establish some 
parallelism between the length of the internal waves and the magnitude of the 
eddy coefficients. We will not venture to postulate any functional relationship 
between the two but simply impose an upper bound on Kml: 

kK,, < 1 cm sec-l, 

to hold in the range 10-8 < k < 10-3cm-1. 

I 

Is 
I 
I 
I 
1 
I 
I 

I 

(45) 

10--8 10-7 10-6 10-5 10-4 10-3 

k (em-I) 

FIGURE 8. The period of the internal waves for 
Ap,,/po = 
H = 5000m. 

= 0.707 x see-', r2 = 0, n = 1, 
and Km3 = 103 cm2 we-l. Continuous lines, H = 1000 m; broken lines, 

Similarly, on the basis of the inhibitive role of the stratification on the verti- 
cal intensity of the turbulence, an upper bound is also stipulated for Km3: 

po1ApoKm3 < 1 em2 see-1, (46) 

to hold in the range 10-5 < Ap,/p,  < 
For a given wave-number and strength of the stratification the damping rate, 

as calculated from (28), (40) or (44), according to the situation, will not exceed 
a maximum value corresponding to the upper bounds (45) and (46). To this 
maximum damping rate also corresponds a minimum relative damping length 
X J L  (i.e. a minimum &). Table 1 shows the value of this minimum & for a 
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H = 104cm H =  1 P o m  H = 5 x  lo5 cm 

L 

6280 km 
628 km 
62.8 km 
6.28 km 
628 m 
62.8 m 

- 
- 2.2 

2.2 
- 2.2 
4.2 5.1 
8.8 8.8 
2.7 2.7 

n = o  n == n,, 

- 

-- 
n = 0 n = nmax n = 0 R = a,, 

2.6 210 47 1600 
14.5 110 61 220 
26 38 63 65 
27 28 35 36 

8.8 8.8 4 2.5 

TABLE 1. The minimum relative damping length (x,/L) (or minimum Q), corresponding 
to the maximum allowed eddy coefficients, for solected values of wavelength L, depth H ,  
two rates of rotation (n = 0, a,,, = 0 . 7 ~  10-4sec-1), n. = 1 and Apo/po = Dashes 
are put in where Q < 1. 

one-component stratification and some values of depth, wavelength and rotation 
rate. We may also note that under the restrictions (45) and (46) the frequency of 
the internal waves departs very little (see figure 8) from the value it would 
have in an ideal fluid and that the phase velocity is hardly affected by the pre- 
sence of mixing. 

In order to apply the results to a real ocean, it) remains to make an estimate of 
the amount of energy lost by the waves due to bottom friction. It will be assumed 
that the influence of bottom friction is restricted to a thin boundary layer, of 
thickness 6 (161 < H ) ,  in which the influence of mixing terms is comparable to 
the time rate of change terms in (9). This particular type of boundary layer is 
chosen because first the problem has been linearized and the non-linear terms 
can therefore not enter the momentum balance, and secondly I m ( w )  > 2C2, 
so that the time rate of change terms prevail over the Coriolis terms. Outside the 
boundary layer, the fluid is assumed frictionless and non-diffusive. The horizontal 
velocities in the boundary layer will then have the form (Lamb 1932, $345) 

with 6 = (1 - i) (Km3/2w)*, and ii is the wave velocity in the ideal fluid a sufficient 
distance above the bottom; if I6l/H is small, ii(z’) is nearly equal to the maximum 
horizontal wave velocity, 5( 1). The velocities in the ideal fluid are given by 

u = ;i2, cos (nm’) sin (Icx - wt) , 
;ij = Go (2sZ/w) cos (nnz’) cos ( kx -w t ) ,  
W = U, (nn/IcH) sin (nnz’) cos (kx - wt). 

u = U(l-exp[(z’- l)B/6]), (47) 

(48) I 
- 

The amount of energy dissipated by friction per unit volume is equal to the vis- 
cosity times the magnitude of the vorticity squared (Lamb 1932, $329); in this 

case, this is pK,,[Ia~/az1~+ lav/a~1~]. (49) 

pEi( 1 + 4sZ2/w2) 7r(*Km3/w)k 

The total amount of energy dissipated by friction in the boundary layer during 
a cycle is then 

On the other hand, the total average energy content of the wave is 
(50 )  

$zi [I + 4 ~ 2 / w 2 +  ~ ~ 2 / ( n 2 n 2 ) ) 1 .  (51) 
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The Q of the waves, when damped only by the effect of bottom friction, is the 
ratio of the energy content to the amount of energy dissipated per cycle, that is 
the ratio of (51) to (50): 

Qm = rn (1 + 4Q2/w2) s (52) 
d (1 + 4Q2/w2 + k2H2/(n2n2)) 

42 

which reduces, for long waves, to 

QBL = & / ( 2 * ~ ) .  (53) 

The total amount of energy lost by the internal waves is found by adding up 
the contribution of the boundary layer to that of dissipation in the interior of the 

H = 104~m 
& 

L R = 0 R = a,,, 
6280 km - 0.19 
628 km - 0.19 

62.8 km 0.71 0.18 
6.28 km 0.23 0.17 
628 m 0.073 0.072 
62.8 m 0.040 0.040 

H = 105cm H = 5x105cm -- 
R = O  R=R,,, R = O  R = k x  

0.23 1.9 10-2 2.0 10-2 3.9 x 10-3 
7.1 10-2 1.8 x 10-2 6.3 x 10-3 3.6 x 10-3 

4.0 x 10-3 4.0 x 10-3 7.9 x 10-4 7.9 x 10-4 
4.0 x 10-3 4.0 x 10-3 7.9 x 10-4 7.9 x 10-4 

2.3 x 1-7 x 2.0 x 2.0 x 10” 
7.3 x 7.3 x 8.6 x lo-* 8.6 x 

TABLE 2. The relative boundary-layer thickness, ISl/E, for Km3 = 103 cm2 sec-1 and the 
same choice of L, H and R as for table 1. Dashes indicate that / S / / H  > 1. 

H = 104cm 

L R = 0 R = R,, 
6280 km - 1.05 
628 km - 1.05 
62.8 km - 1.05 
6-28 km 1.32 1.00 
628 m 1.44 1.46 
62.8 m 23-7 23.7 

H = 105cm 

s 2 = 0  = Qmax 

w 

1.32 4.62 
1.36 4.65 
3.98 5.11 

13.3 13.3 
235 235 
3.2 x lo+ 2.2 x 104 

H = 5xl05cm 

n = 0 n = R2,,, 
4.37 22.9 

13.8 23.9 
43.8 44.4 

352 352 
2.7 x 104 2.7 x 104 
2.7 x lo6 2.7 x lo6 

TABLE 3. QBL, the ratio of the total average ener,v content of the internal waves to the 
amount of energy dissipated by friction in the bottom boundary layer in on0 cycle. 
K ,  = 103 cmz sec-1; L, H and R as in preceding tables. Dashes indicate that QBL > 1. 

H = 104cm H = 105cm H = 5x105cm 
h -7-r------lc----7 

L R = O  R=R,, ,  R = O  n=n,,, R = O  R=R,, 
- - 6280 km - 4.50 4.00 22.6 

628 km - - 1.24 4.46 11.2 12.7 
62.8 km 3.46 4.60 25.8 26.2 
6.28 km 1.01 - 8.90 9.00 31.8 32-6 
628 m 1.20 1.22 8.51 8.51 4.00 2.50 
62.8 m 1.26 1-26 

- - 

- - - - 

TABLE 4. QT, the ratio of the total average energy content of the internal waves to the 
total amount of energy dissipated per cycle in both the boundary layer and the interior of 
the fluid. Calculated from the values of tables 1 and 3 for the values of eddy coefficients 
and stratification used in those tables. Dashes indicate that QT > 1. 
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fluid. A total Q representing the total relative dissipation rate of the waves can 
than be written in terms of QBL and xe/L (which will be denoted for the purpose 

Qi' = Q j i  + Q&. (54) 
by Qint): 

A useful check on the applicability of the boundary-layer approximation is 
provided by comparing the calculated boundary-layer depth ( 161 = (&Km3/u)*) 
with the total depth of the fluid. Table 2 gives the ratio )6 ) /H  for Km3 = lo3 em2 
sec-1 and the same values of L, H and !2 as in table 1. It is seen that the relative 
boundary-layer thickness ( I  61 / H )  is smallest for large depths and short waves, 
so that the boundary-layer approximation will be at  its best in those conditions. 

The quantity QBL, characterizing the energy dissipation rate in the boundary 
layer, is tabulated in table 3, for Km3 = 103~rn~sec-l. The dependence of the 
dissipation rate on the wavelength is opposite to that in the interior of the fluid. 
The importance of bottom friction increases markedly as the depth decreases, 
and long waves are much more affected by it than short ones. In  the latter, 
n27P 

QT, the ratio of the average energy content to total energy dissipation per cycle, 
is calculated, as for (54), from tables 1 and 3 and shown in table 4. One notices 
that the effect of bottom friction dominates for longer waves, that of 'interior' 
dissipation for shorter waves, so that the wavelength dependence of QT is weaker 
than that of either QBL or Qint. 

a2 and the dissipation is mostly due to horizontal mixing. 

8. Conclusions 
Any conclusion to be drawn from the above results on the attenuation of 

internal waves in the chosen model depends upon the validity of restricting 
the effect of bottom friction to a thin boundary layer, and upon the upper 
bounds chosen in (45) and (46) for the eddy coefficients. An easy check on the 
first of these assumptions is provided by the calculated value of ISl/H (this is 
done in table 2 for one value of Km3). Although the choice of upper bounds for the 
eddy coefficients is more subject to discussion, it still seems permissible to make 
the following general remarks on the behaviour of internal waves in a weak 
exponential stratification. 

(1)  Long internal waves in shallow ( H  N lo4 em) basins will be very rapidly 
damped. Even though the boundary-layer approximation may be very poor in 
such conditions, the damping rate in the interior of the fluid is high enough to 
insure rapid attenuation. Long internal seiches of the Baltic Sea, or of Hudson 
Bay, for example, should not last more than 8 few cycles after the disappearance 
of the exciting mechanism. 

(2) Long internal tides will be slowly, but significantly, attenuated as they 
propagate across deep oceanic basins. For example, in an ocean 5km deep 
where Apo/po = 10-3, the semi-diurnal internal tide has wavelengths of 222 
and 450 km at latitudes 0" and 60" respectively, and corresponding values of QT 
of 15.7 and 17-4, and of x, of 3500 and 7800 km. Similarly, the diurnal tide has a 
wavelength of 444 km a t  the equator, a QT of 12 and xe of 5350 km, in the same 
conditions. Internal waves of tidal frequencies should then be observable very 
far from the coasts (assuming that they are generated there). On the other hand, 
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the attenuation rates are certainly large enough to prevent the establishment of 
standing wave systems. Another obstacle to large standing waves is of the great 
increase in damping rate suffered by an internal wave as it enters shallow waters. 

(3) For waves of medium length, the damping length is in all cases much 
smaller than the lateral oceanic dimensions. Since such waves have been observed 
far away from the coasts (Ufford 1947), it must be concluded that they are gener- 
ated locally, presumably through interaction with the atmosphere. 

(4) Very short (L  < 100m) internal waves are strongly damped over the 
whole range of depths considered here (100m < H < 5000m). The damping is 
produced in this case mostly through lateral mixing in the interior of the fluid. 

(5) For eddy coefficients subject to restrictions (45) and (46), the frequency 
of damped internal waves departs little from that of undamped waves, and the 
relative damping depth x,/L depends almost exclusively on the real part of c. 

For long internal waves the present results do not differ very much from thosc 
derived by Rattray (1957) for a two-layer model. Since the longer waves are 
damped mostly through the effect of bottom friction, the form of the stratifica- 
tion does not have a strong influence on the damping rate, and the dependence 
on the eddy coefficients is of the same form in both models (proportional to 
JKms). Here, as in Rattray, the results may be interpreted to conclude that large 
internal tides will be concentrated in a band surrounding the continents. The 
width of this band will depend of course on the choice made for the magnitude 
of the eddy coefficients. Because of the dominance of bottom friction, and in 
view of the similarity of the results obtained for the two extreme cases studied 
so far, it  seems, finally, that the damping rate of internal tides depends very 
little on the actual form of the stratification present in the fluid. 

This work was accomplished during tenure of a Post-doctoral Fellowship 
from the National Research Council of Canada, held at  the Institut fur Meeres- 
kunde, Kiel, Germany. 
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